
www.manaraa.com

Volume 6, Number 37 http://isedj.org/6/37/ March 18, 2008

In this issue:

Slickr: A Multi-Tiered Web Development Capstone Project Using
Databases, Web Services, and AJAX

Mark Frydenberg
Bentley College

Waltham, MA 02452 USA

Abstract: Current web applications are increasing in popularity because of their browser-rich
interfaces and ability to incorporate information from a variety of sources. This paper presents a
simple photo sharing application and enhancements to it using Web Services and ASP.NET AJAX
in order to illustrate some of the implementation details of Web 2.0 applications on a very small
scale. Early in the course, students create web-based applications whose pages have dynamic content
obtained from a SQL Server Database. Students later repackage some of their queries to share as
web services, and then improve upon the user interface by incorporating AJAX enhancements. The
project may serve as a capstone assignment in an undergraduate web application development course,
where students use ASP.NET and C# with Microsoft Visual Studio 2005. The paper argues that
ASP.NET AJAX provides a new motivation for teaching web services. The paper also discusses
pedagogical values and new opportunities as a result of this approach.

Keywords: ASP.NET, Web Services, AJAX, Web 2.0, Multi-Tiered Application Development,
capstone, Visual Studio

Recommended Citation: Frydenberg (2008). Slickr: A Multi-Tiered Web Development
Capstone Project Using Databases, Web Services, and AJAX. Information Systems Education
Journal, 6 (37). http://isedj.org/6/37/. ISSN: 1545-679X. (Preliminary version appears in The
Proceedings of ISECON 2007: §2353. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/6/37/

www.manaraa.com

ISEDJ 6 (37) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2008 AITP Education Special Interest Group Board of Directors

Paul M. Leidig
Grand Valley State University
EDSIG President 2005-2006

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Robert B. Sweeney
U South Alabama

Vice President 2007-2008

Wendy Ceccucci
Quinnipiac Univ

Member Svcs 2007-2008

Ronald I. Frank
Pace University

Director 2007-2008

Kenneth A. Grant
Ryerson University
Treasurer 2007-2008

Albert L. Harris
Appalachian St

JISE Editor

Thomas N. Janicki
Univ NC Wilmington
Director 2006-2009

Kevin Jetton
Texas St U San Marcos
Chair ISECON 2008

Kathleen M. Kelm
Edgewood College
Director 2007-2008

Alan R. Peslak
Penn State

Director 2007-2008

Steve Reames
Angelo State Univ
Director 2008-2009

Patricia Sendall
Merrimack College
Secretary 2007-2008

Information Systems Education Journal Editors

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
Univ of North Carolina Wilmington

Associate Editor

This paper was selected for inclusion in the journal as part of the ISECON 2007 best papers group.
Best papers received preliminary reviews by three or more peers placing them in the top 30% of
papers submitted and final reviews placing them in the top 15% by three or more former best papers
authors who did not submit a paper in 2007.

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2008 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 3

Slickr: A Multi-Tiered Web Development

Capstone Project
Using Databases, Web Services, and AJAX

Mark Frydenberg

mfrydenberg@bentley.edu
Computer Information Systems Department

Bentley College, 175 Forest Street
Waltham, MA 02452 USA

ABSTRACT

Current web applications are increasing in popularity because of their browser-rich interfaces
and ability to incorporate information from a variety of sources. This paper presents a simple
photo sharing application and enhancements to it using Web Services and ASP.NET AJAX in
order to illustrate some of the implementation details of Web 2.0 applications on a very small
scale. Early in the course, students create web-based applications whose pages have dynamic
content obtained from a SQL Server Database. Students later repackage some of their que-
ries to share as web services, and then improve upon the user interface by incorporating AJAX
enhancements. The project may serve as a capstone assignment in an undergraduate web
application development course, where students use ASP.NET and C# with Microsoft Visual
Studio 2005. The paper argues that ASP.NET AJAX provides a new motivation for teaching
web services. The paper also discusses pedagogical values and new opportunities as a result
of this approach.

Keywords: ASP.NET, web services, AJAX, Web 2.0, Multi-Tiered Application Development,
capstone, Visual Studio

1. INTRODUCTION

Web 2.0 is has become a buzzword for ap-
plications often characterized by the ability
to tag and share information, collaborate,
“mash-up” content from different web
sources in a single application, and interact
with rich user interface elements running
within a browser that resemble the complex-
ity of interfaces found in traditional desktop
applications. (O'Rielly, 2005) Web services
enable the sharing of information between
applications that may, and often, run on dif-
ferent platforms or servers, through the use
of well-defined protocols and standards.

AJAX (Asynchronous JavaScript and XML) is
a new combination of existing technologies
that enables the creation of sophisticated
user interfaces within a web browser. Micro-
soft’s ASP.NET AJAX Toolkit, released in Fall,
2006, is a framework that simplifies the
creation of sophisticated user interfaces for

ASP.NET applications through the use of re-
usable components.

This paper describes an example that makes
use of web services and AJAX as two tools
for an incremental capstone project in a
multi-tiered application development course.
Students create a simple photo sharing ap-
plication that is data driven, and then en-
hance it to make use of web services for
sharing and searching photos. Finally, stu-
dents incorporate AJAX elements to enhance
the user interface of their applications. In
doing so, they interact with current tech-
nologies and gain an appreciation for the
elements of Web 2.0 applications.

2. TECHNOLOGY OVERVIEW

Web Services

Web services “extend the reach of [web]
applications by allowing them to communi-
cate with other applications.” (Homer &

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 4

Sussman, 2006) Through a series of defined
protocols and standards, web applications
may remotely invoke methods that reside on
servers elsewhere. The results of a web ser-
vice call are always in given in XML (eXten-
sible Markup Language) format.

Several protocols and standards including
SOAP (Simple Object Access Protocol),
WSDL (Web Services Description Language),
and UDDI (Universal Description, Discovery,
and Integration) are responsible for access-
ing, describing, and discovering web ser-
vices. Along with HTTP (Hypertext Transfer
Protocol), these form the “plumbing” be-
tween applications that consume web ser-
vices and the services themselves.

In Microsoft Visual Studio, one adds a web
reference to specify a web service that an
application will consume. Doing so causes
Visual Studio to transparently handle all of
the details for creating the associated WSDL
documents, SOAP headers, and proxy
classes, the technical details of which are
beyond the scope of this paper.

By providing methods that are callable from
external applications, web services create a
new way for organizations to share their da-
ta with other applications over the web.
Google and Amazon.com make web methods
available; other web services are available to
obtain current stock quotes, weather infor-
mation, and news headlines. The web site
xmethods.net is a directory of several web
services that are freely available.

AJAX

AJAX (Asynchronous JavaScript and XML)
has achieved recent popularity as a tool for
creating dynamic web pages in which only a
part of the page updates at a time. For ex-
ample, one might call a web service for user
authentication from a client script. As a re-
sult, it is possible to create sophisticated
user interfaces for applications that run
within a web browser.

With AJAX applications, JavaScript function
calls run independently (asynchronously) of
the loading of a web page. The function calls
may invoke web services or other JavaScript
methods to obtain new information with
which to update the page, and only a portion
of the page may be updated without having
to refresh the entire page. As a result, it is
possible to provide a more interactive user

experience while maintaining very fast re-
sponse times.

In Fall 2006, Microsoft introduced the
ASP.NET AJAX toolkit, a framework for build-
ing AJAX applications within ASP.NET. (Mi-
crosoft Corporation) The toolkit includes a
number of pre-defined user interface con-
trols such as dependent dropdown lists, ac-
cordion controls for animating the display of
a page region, and controls for predictive
type-ahead (similar to Google Suggest), for
creating improved user experience when
visiting a web page.

Every ASP.NET AJAX enabled page contains
a ScriptManager control and an UpdatePanel
control. The ScriptManager manages all of
the basic ASP.NET AJAX components on the
page. Setting the ScriptManager’s En-
ablePartialRendering attribute to true en-
ables the ability to update only a portion of
the page. The UpdatePanel contains the
content that will be updated without refresh-
ing the entire page. (See Figure 2.)

The ability to invoke an ASP.NET web service
from client-side code without having to post
back to the server provides a new motiva-
tion for students to learn about web ser-
vices. Controls on the page that receive the
updated data from a web service call are
refreshed, enhancing the user’s experience
of the web application. Thus the user inter-
face has much more of a desktop application
“look and feel” despite the fact that it is run-
ning within a web browser.

3. TEACHING WEB SERVICES

Strategies for Teaching Web Services

While little has been written about integrat-
ing web services into the curriculum (Peslak,
2006) they are becoming a standard topic in
college level web development courses. In
many web application development courses
(Humphrey, 2004; Lim, 2006; Peslak,
2006), web services are introduced near the
end of the course, after previously covering
topics in client/server programming, ses-
sions, security, and web database access
techniques. As web service consumers, stu-
dents often create new web applications that
integrate external content available through
web services. As web service producers,
students learn to repackage existing applica-
tions by creating APIs that enable the shar-
ing of functional units with other applica-

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 5

tions. Web services add a “real world” per-
spective to application programming as stu-
dents interact with APIs provided by Google,
Amazon.com and others.

Assuncao and Osorio (2005) taught web
services as part of a Distributed Systems
architectures course. Their course spends
four weeks on topics related to web services,
introducing WSDL as a service interface de-
scription, and SOAP as a way to invoke ser-
vice operations. Next, they create a simple
web service, deploy and test it. They look at
proxies from existing web services from
Google and Amazon, and then introduce
students to Visual Studio as an integrated
development environment for creating web
services. Their course delves deeper into
advanced topics such as generating WSDL
files, SOAP headers, state management, and
Web Services Interoperability (WS-I) specifi-
cations.

Lim, Jong, & Mahatanankoon (2005) present
a number of scenarios for integrating web
services into CS1 and CS2 courses. In CS1
courses, web services might be introduced
as “methods [that] may have been written
by others ... [that are] scattered all over the
world but … are callable from the Web.”
Traditional programming structures of se-
quence, selection, and repetition may be
taught through the creation of mash-ups,
programmatic invocations of web methods
that may be combined to solve real world
problems, such as “plot on a map the United
States city with the warmest temperature.”
In CS2 courses, invoking third-party web
services such as Google’s Web Services API
requires working with complex data struc-
tures that contain real data. They argue that
these examples “will not only fascinate the
students with its interesting collection of ac-
tivities, but also inspire and prepare them
for real-world software development scenar-
ios when they graduate.”

Neubauer (2007) has investigated tech-
niques for teaching SOA to non-technical
students. “The challenge of teaching SOA is
that it requires programmers and … manag-
ers to learn to think of what organizations do
in terms of business processes, workflows
and ‘services’” but the notion of services is
“unfamiliar and not particularly intuitive.”
Students created original web services and
then applications to consume them in order
to better understand how different software

components may be combined together to
create a functional system.

Teaching Web Services

in a Web Development Course

CS 380 is a Multi-Tiered Application Devel-
opment course for students in the BS in
Computer Information Systems program at a
New England business college. Topics in the
course include data access models, applica-
tion development life cycle models, creating
and integrating a user interface, and applica-
tion design. Web services are introduced and
students create applications that invoke
simple web methods.

Students in the course have completed two
semesters of object oriented programming
(in Java) and at least one database course.
They have already learned to create per-
sonal web pages in their first year Introduc-
tion to Technology courses, and some may
have taken an additional World Wide Web
course covering HTML and JavaScript.

The goals of the course are to develop indi-
vidual competency in creating web-based
applications using a contemporary inte-
grated, object-oriented development envi-
ronment. Students apply their programming,
modeling, database, and networking skills
from previous courses in a business applica-
tion development and maintenance context,
creating new or enhancing existing solutions.
Thus it is natural for the capstone develop-
ment course to require demonstrated indi-
vidual competence by having students build
a small-scale real-world project. The course
meets one evening per week for 150 min-
utes; in each class session, the instructor
usually gives a demo and lectures on course
concepts, and then students complete a
short hands-on activity. There are about
five or six implementation assignments over
the course of the semester; some later pro-
jects may build on solutions completed in
earlier ones. Students also complete a
“community assignment” in which they must
visit one ASP.NET user group meeting or
Visual Studio developer’s activity at the local
Microsoft office during the semester, and
write a short paper about what they learned.

CS 380 follows similar steps as Peslak
(2006) in teaching web services. An intro-
ductory lecture presents basic web services
concepts including SOAP, XML, and UDDI.
Unless one is teaching an entire course on

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 6

web services, it may be sufficient in an un-
dergraduate course that is introducing web
services to present an overview of the ter-
minology for these standards and protocols.
By doing so, students can recognize the
kinds of information each of the files con-
tains. A deeper understanding is probably
not necessary.

Students first learn to write and test Hel-
loWorld() and other simple web methods
that return scalar values (such as multiply-
ing two numbers and returning their prod-
uct). Then they create simple applications to
invoke these methods.

Next, students learn to use real, third-party
web services that are freely available at web
sites such as xmethods.net. Students exam-
ine the methods, test invoking them to see
the format of the data returned, and write
their own applications to consume them.
This gives students experience dealing with
real-world APIs, and allows students to see
the variety of applications which expose
their data as web services.

Finally, students learn to write their own
methods that return a list of user-defined
objects, and to create applications that in-
voke them.

One example shown in class demonstrates
how to take a previously completed data-
base query or stored procedure and package
it as a web service. Doing so gives insight
into how a company might implement web
services to expose its product information
for customers to use on their web sites. For
example, an Amazon.com web service in-
cludes a method to search the Amazon.com
database for a book, given its ISBN number,
and return book information and cover im-
ages. This example gives students a sense
of how such commercial web services might
be written.

4. TEACHING AJAX

Teaching AJAX

AJAX technologies have been embraced by
several popular web sites: Google Maps,
NetFlix movie previews, Flickr photo sharing,
and new versions of web-based email clients
such as Gmail and HotMail all make use of
AJAX. Teaching students to use AJAX in
their own applications gives them a sense of
what is required to create the more complex

applications with which they are already fa-
miliar.

ASP.NET AJAX provides a rich set of built-in
controls to simplify the process. ASP.NET
AJAX creates JavaScript proxy classes for
ASP.NET web services automatically. While
the implementation is transparent to the
user within Visual Studio 2005, the details
may be explained at an appropriate level
depending on the class.

Another motivation for teaching AJAX using
the ASP.NET AJAX Framework and Toolkit is
that it provides a new application for web
services. Some ASP.NET AJAX controls, such
as a CascadingDropDown control, may be
populated with results obtained by calling a
web service method. When those methods
invoke previously written database queries,
several course concepts are integrated in
one example.

An AJAX Example:

Dependent DropDown Lists

A common example of a user interface solu-
tion that becomes more elegant with AJAX is
the cascading or dependent drop down list.
Consider a dropdown list of U.S. states, and
another with cities; after selecting a state
from the States list, the Cities list should
display only those cities in the selected
state. Selecting a city displays the City,
State pair in a label on the web page.

In a traditional, non-AJAX application, se-
lecting the state would cause a postback to
the server, and then the cities list would be
populated. The contents of the entire page
would be redrawn. Implementing this func-
tionality using AJAX requires only the Cities
list and resulting label to be redrawn.

One implementation might query a database
containing the appropriate city/state infor-
mation, placing the results in a
SqlDataAdapter, and then copying them into
an array of CascadingDropDownNameValue
pairs, which will be used, to populate the
dropdown lists. The implementation details
are omitted. The method signatures are
shown in Figure 1.

Using the ASP.NET AJAX toolkit, one may
place a CascadingDropDown control onto an
ASP.NET web form. By providing values for
its ServicePath and ServiceMethod attrib-
utes, one specifies the names of the path to,
and methods in a web service.

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 7

 [WebMethod]
 public
CascadingDropDownNameValue[]
GetStates(string
knownCategoryValues, string
category)
 { // code omitted
 }
 [WebMethod]
 public
CascadingDropDownNameValue[]
GetCitiesInState(string
knownCategoryValues, string
category)
 { // code omitted
 }

Figure 1. Web Methods that return Cas-

cadingDropDownNameValue pairs.

The CascadingDropDown controls invoke the
GetStates and GetCitiesInState web meth-
ods directly through the ServiceMethod at-
tributes, as shown in Figure 2. When the
City dropdown list’s SelectedIndexChanged
event is invoked, that triggers the asynchro-
nous post back trigger to update the label on
the page with the selected city/state pair.
Error-checking code to ensure a value is se-
lected from both the city and state drop-
down lists has been omitted from the
ddlCity_ SelectedIndexChanged event han-
dler for the sake of brevity.

<asp:ScriptManager
 ID="ScriptManager1"
 EnablePartialRendering="true"
 runat="server" />

State:
<asp:DropDownList
 ID="ddlStates"
 runat="server" />

City:
<asp:DropDownList
 ID="ddlCity" runat="server"
 AutoPostBack="true"
 OnSelectedIndexChanged=
"ddlCity _SelectedIndexChanged" />

<ajaxToolkit:CascadingDropDown
 ID="cddState"
 runat="server"
 TargetControlID="ddlStates "

 ServicePath="WebService.asmx"
 ServiceMethod="GetStates"
 Category="State"
 PromptText="Select a State"/>

<ajaxToolkit:CascadingDropDown
 ID="cddCity"
 runat="server"
 TargetControlID="ddlCity "
 ParentControlID="ddlStates "
 ServicePath="WebService.asmx"
 ServiceMethod="GetCitiesInState"
 Category="City"
 PromptText="Select a City"
 />

<asp:UpdatePanel
 ID="UpdatePanel1"
 runat="server">

 <ContentTemplate>
 <asp:Label
 ID="Label2"
 runat="server"
 Text=""
 />

 </ContentTemplate>

 <Triggers>
 <asp:AsyncPostBackTrigger
 ControlID="ddlCity "
EventName="SelectedIndexChanged"
/>
 </Triggers>
 </asp:UpdatePanel>

protected void ddlCity
_SelectedIndexChanged(object
sender, EventArgs e)
 {
 string city =
 ddlCity.SelectedItem.Text;
 string state =
 ddlStates.SelectedItem.Text;
 Label2.Text =
 city + ", " + state;
 }

Figure 2. ASP.NET Controls ScriptMan-
ager and UpdatePanel handle refreshing
a portion of the page. The event handler
code processes the selected item from
the dropdown list on the Cascading-

DropDown page.

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 8

Students can create sophisticated user inter-
faces with very little coding by using the
toolkit controls.

5. Slickr: A CAPSTONE PROJECT USING
A SQLServer DATABASE,

WEB SERVICES, AND ASP.NET AJAX

Phase 1: Slickr

Overview. CS 380 students use Microsoft
Visual Studio with ASP.NET in C# to create
data-driven distributed web applications.
For their database assignment, students
created a simple photo-sharing web applica-
tion dubbed “Slickr”, a simple imitation of
the popular Flickr photo-sharing web site.
The assignment had students create a Slickr
web site on which users may perform the
following tasks:

• Create albums and upload photos into
specific albums

• Associate a description and one or more
user-specified tags with a photo

• Search albums for photos with specific
tags, and display matching photos

• Ability to edit and delete album or tag
names, and photo descriptions

To fulfill the technical requirements for this
assignment, students also had to create C#
classes to model all relevant objects, define
and invoke at least one stored procedure,
and implement a data access layer class. In
addition, their application pages had to
make use of both SqlDataSource and Ob-
jectDataSource controls a least once.

To encourage individual creativity, students
also had to identify an additional feature to
implement in their Slickr application. Some
students made these enhancements:

• Designating a picture as the “album im-
age” to be displayed along with the al-
bum name.

• Rating pictures numerically and display-
ing an average rating for each.

• Implementing “tag clouds” to display
more frequently used tags in larger
fonts, and less frequently used tags in
smaller fonts.

In a later lesson on ASP.NET security con-
trols, students enhanced the project to cre-
ate two users with different privileges. An

administrative user had privileges to search
and view pictures, upload pictures, and edit
titles, tags and descriptions. A standard us-
er could only search and view pictures.

Some students added the ability for users to
“log in” and access their own set of albums,
to be able to perform the functionality
above. This required adding a User table,
and a composite primary key to the Album
table, so that one user might have many
albums.

Object Model: While it may be natural to
begin by designing the database tables,
modeling the objects independent of any
database implementation helps to better
consider the attributes and methods associ-
ated with the objects themselves, and those
associated with their data access. This
model, shown in Figure 3, separates the in-
formation inherent to a particular object
from the additional information (primary
keys) that will be required to store it in a
database.

Figure 3 (a). Slickr Object Model

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 9

Figure 3 (b). Slickr Object Model

SlickrAlbum is a class describing photo al-
bums; DBAlbum is a subclass containing the
database id’s for the album and the id for its
album image, so that the application may
write the information about the album to a
database. The other classes are imple-
mented similarly. In this way, the model
separates the database information from the
object information. This implementation will
prove beneficial in the third phase, when
only information about the objects will be
shared with other applications via web ser-
vices.

Database Model: The required database
tables are relatively straightforward, as
shown in Figure 4. The PicTag table, relating
many pictures with many tags, is the only
table that requires the use of a composite
primary key.

Students had to create constraints to handle
cascading deletes, so that deleting an album
deleted all pictures in it, and deleting a pic-
ture deleted the appropriate entries from the
PicTag table. For the purposes of this as-
signment, once a tag is entered into the Tag
table in the database, it stays there forever.

Primary keys albumID, picID, and tagID are
set up as Identity columns in SQL Server, so
that the user may use SCOPE_IDENTITY() to
obtain the most recently used primary key
value when inserting a new item into the
corresponding tables.

The methods in the Data Access layer, as
shown in Figure 5 serve as the middleware
between the object classes and the data-
base. Creating a data access layer promotes

the concept of a multi-tiered architecture for
the application.

Figure 4. Slickr Database Design

Students then implement methods to add
albums and pictures to the database, search
for pictures by their associated tags, retrieve
the album names and tag names, and obtain
all of the tag names associated with a given
picture.

public static class DBDataAccessLayer
{
 public static void addAlbum(
 string title, string description,
 int albumImagePicID) { … }
 public static void addPicture(
 DBPicture picture) { … }
 public static DBPicture
 getPictureInfo (
 int picID) { … }
 public static void setAlbumImage (
 int albumID,
 string albumImageURL) { … }
 public static List<Album> getAlbums
 () { … }
 public static List<SlickrPicture>
 getPictures() { … }
 public static List<SlickrPicture>
 getPicturesByTag(string tag){ … }
 public static List<SlickrTag>
 getTags() { … }
 public static List<SlickrTag>
 getPicTags(int picID) { … }
}

Figure 5. Data Access Layer Methods

The Data Access Layer: Most of the me-
thods require students to create an API for
relatively simple database queries. Their
implementations are straightforward, and
have been omitted here for sake of brevity.
The only method that is a bit more involved
is addPicture. It must accomplish three
tasks:

• Perform an Insert query to add a new
picture to the Picture table

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 10

• Determine if a tag is already in the Tag
table, and if not, add it

• Insert the picID / tagID pair into the Pic-
Tag table

It is useful to note that many of the “get”
methods return a generic List<> of base
class objects. This will be useful in phase 2,
when these queries are repackaged for use
in methods of a web service.

With this framework in place, students cre-
ate these web pages for their Slickr projects:

• Create an album

• Upload pictures to a specified album,
specifying tags and a description for
each photo

• Browse/Search for pictures (view all or
by tag, and for a specific album)

Figures (b) and (c) in the Appendix show the
New Album and Search pages in one stu-
dent’s completed project.

Phase 2: Web Services Enhancement

This framework provides significant com-
plexity and structure for incorporating web
services into the application. In the web
services enhancement to the Slickr project,
students complete these steps:

• Create a web service with methods to
expose their photos

• Rewrite their search and display pages
to invoke their web methods

• Create a page to search and display pho-
tos from a classmate’s Slickr project by
invoking the classmate’s web service
methods

By creating and consuming each others’ web
services, students act as both web service
producers and consumers, and come to un-
derstand the need for standard APIs. Stu-
dents also get a sense of the important role
that web services play in making data avail-
able for sharing between applications, and
the role of XML as a standard for represent-
ing that data. The instructor provided a
sample web service for those students
whose partners had difficulty completing this
part of the assignment.

With the relevant queries neatly packaged as
methods within the data access layer, re-
packaging them as web services in the

SlickrWebService class is trivial. Each web
method invokes a previously written query
or stored procedure from the data access
layer.

• Get Tags() returns a list of all of the tags
from the Tag table in the database.

• GetPicturesByTag(string tagName) re-
turns a list of all pictures from the Pic-
ture table that match the specified tag.

• GetPictures() returns all of the pictures
from the Picture table.

using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Collections.Generic;

[WebService(Namespace =
"http://tempuri.org/")]
public class SlickrWebService :
System.Web.Services.WebService {

public SlickrWebService () {}

 [WebMethod(Description = "Returns
list of tags.")]
 public List<SlickrTag> GetTags()
 {
 return DBDataAccessLayer.getTags();
 }

[WebMethod(Description = "Get
Pictures with a given Tag Name")]
 public List< SlickrPicture>
GetPicturesByTag(string tagName)
{
 return
DBDataAccessLayer.getPicturesByTag(
 tagName);
}

 [WebMethod(Description = "Get all
Pictures")]
public List< SlickrPicture>
GetPictures()
{
 return
DBDataAccessLayer.getPictures();
}

}

Figure 6. Slickr Web Service
and methods

Students used GetTags() to populate a list
box (or in one case, tag cloud) with the

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 11

names of the available tags, and GetPic-
turesByTag() to display those pictures that
match the selected tags.

The base classes SlickrTag and SlickrPicture
expose only those items that the web meth-
ods need to return, as a List<> of these ob-
jects. Figure 6 shows the implementation of
the associated web methods.

Web methods must return data about the
pictures in a form that other web applica-
tions can use directly. For example, the url
returned in a SlickrPicture must be absolute
(i.e., http://myserver.com/me/slickr/images
/mypic.jpg) while the value stored in the
database is simply the name of the image
file.

Figure 7 shows the format of the sample
data returned`in XML format when testing
the GetPicturesByTag() web method.

Phase 3: AJAX Enhancements

Students had to implement two AJAX en-
hancements in their Slickr projects. The first
was to develop a slide show to display ran-
domly chosen photos every two seconds.
The second was to select at least one addi-
tional control from the ASP.NET AJAX toolkit
to incorporate into the project. Their AJAX
enhancements included:

• Using the Ratings control to rate photos,
and display an average rating for each.

• Using the ResizableControlExtender for
Dynamic resizing of photos.

• Using CascadingDropDown controls to dis-
play drill down queries from albums to pic-
tures within a selected album, or to display
tags and pictures by tag.

Appendix figures (a) and (e) show screen
shots from two students’ solutions that illus-
trate the first two of these features.

Figure 8 shows a code fragment from the
SlideShow.aspx page. The page invokes the
web service’s GetPictures() method to re-
trieve the photos, and then uses the AJAX
Timer control to select one at random, every
two seconds, as specified by the Inter-
val=2000 attribute. This was a good exam-
ple of how only the portion of a page within
the UpdatePanel control updates. Students
appreciated that they were able to re-use
code they had already written (and that was
already working) as part of this exercise.

Figure 7. Testing a web method
and examining the

XML-formatted data it returns

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 12

<asp:ScriptManager
id="ScriptManager1" runat="server"
EnablePartialRendering="true">
 </asp:ScriptManager>

 <asp:UpdatePanel
id="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Image id="Image1"runat="server"
 ImageUrl="~/data/logo.jpg"
</asp:Image>

<asp:Button id="Button1"
onclick="Button1_Click"
runat="server" Text="Start">
</asp:Button>
<asp:Timer id="Timer1" runat="server"
 Interval="2000" OnTick="Timer1_Tick"
 enabled="false">
 </asp:Timer>
 </ContentTemplate>
</asp:UpdatePanel>

Figure 8. SlideShow.aspx

public partial class Slideshow :
System.Web.UI.Page
{
 public SlickrWS.SlickrWebService
ws = new SlickrWS.SlickrWebService();
 public SlickrWS.SlickrPhoto[]
photos;

 protected void Page_Load(object
sender, EventArgs e)
 {
 photos = ws.GetPictures();
 Image1.ImageUrl =
GetRandomPicture ();
 }
 protected void Timer1_Tick(object
sender, EventArgs e)
 {
 Image1.ImageUrl = GetPhoto();
 }
 protected void
Button1_Click(object sender,
EventArgs e)
 {
 if(Timer1.Enabled)
 {
 Timer1.Enabled = false;
 Button1.Text = "Start";
 }
 else
 {
 Timer1.Enabled = true;
 Button1.Text = "Stop";
 }
 }
 private string GetRandomPicture()

 {
 Random r = new Random();
 int n =
r.Next(0,photos.Length - 1);
 return photos[n].Url;
 }
}

Figure 9. Event handling methods for
the SlideShow page.

Figure 9 shows the code for handling the
events to load the page and select a new
photo every two seconds. The helper method
GetRandomPicture() selects a random pho-
tograph from the list that the web service
returns. The Timer’s Tick method randomly
selects a new photo. The Button’s Click me-
thod turns the timer on or off.

Figure (d) in the Appendix shows the slide
show in operation.

It is worthwhile to note that this code for a
web application resembles code for a similar
desktop application that one might write
with Visual Basic or C#. This is a simple
enhancement of a web application that has
the look and feel of a desktop application.
Figure (d) in the Appendix shows screen
shots of the SlideShow page in one student’s
Slickr project.

6. ACKNOWLEDGEMENTS

The author acknowledges Hunter Jones and
Adam Sternberg, two CS 380 students
whose Slickr projects are shown in the Ap-
pendix. In addition, Hunter’s comments on
object design aspects of the Slickr project
were valuable during the preparation of this
paper.

7. CONCLUSION

CS 380 is the only course that students in
order take to develop individual competency
in creating distributed web applications.
Skills learned in this course are useful in a
future applied project management course.
They come to have a better understanding
of distributed application architecture. Said
one student:

CS 380 projects required me to think not
only about the coding aspect, but the de-
sign of web applications even more. Learn-
ing which and how things work together,
and performance issues were all impor-
tant. Using server controls and web ser-

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 13

vices gave me a better understanding of
how web development works. When I visit
a site such as Amazon.com now, I know
that millions of users are connecting to
their Web Services, and pulling data out of
their public databases and into their own
applications. By completing this [Slickr]
project and other homework projects in CS
380, I now have a sense of the some of
the components and related issues that
must be considered when building large-
scale web-based business applications.

Teaching web services to students in a Multi-
Tiered Application Development course pro-
vides insights into reusability of software
modules, underscores the importance of
APIs and good software design, and offers a
concrete example of distributed system ar-
chitectures. By creating their own and call-
ing each other’s web service methods, stu-
dents also learn the importance of abstrac-
tion and proper object-oriented design.
ASP.NET AJAX provides a new outlet for web
services, as several of the pre-defined con-
trols in its toolkit accept input from web ser-
vice methods.

Teaching AJAX also introduces students to
an asynchronous architecture found in many
current web applications. Students also learn
to create their own web applications with
more involved user interfaces.

The Slickr sample assignment described in
this paper integrates all of these concepts.
Completing it requires students to apply
several course concepts into a single web
site on a small scale that mimics a real-
world Web 2.0 application.

8. REFERENCES

Assuncao, L., & Osorio, A. L. (2006).
Teaching web services using .NET plat-
form. ACM SIGCSE Bulletin (p. 339).
New York, NY: ACM Press.

Connolly, R. (2005). A Funny Thing Hap-
pened on the Way to the Form: Using
Game Development and Web Services in
an Emerging Technology Course. Infor-
mation Systems Education Journal , 38
(3), 1-9.

Homer, A., & Sussman, D. (2006).
ASP.NET 2.0 Illustrated. Boston, MA:
Addison-Wesley.

Humphrey, M. (2004). Web Services as
the Foundation for Learning Complex
Software System Development. 35th
SIGCSE Technical Symposium on Com-
puter Science Education (pp. 457-461).
Norfolk, VA: ACM Press.

LaMonica, M. (2005, October 4). Ajax
gives software a fresh new look. Re-
trieved May 1, 2007, from ZDNet:
http://news.zdnet.com/2100-3513_22-
5886709.html

Lim, B. B., Jong, C., & Mahatanankoon, P.
(2005). On integrating web services
from the ground up into CS1/CS2. Pro-
ceedings of the 36th SIGCSE technical
symposium on Computer science educa-
tion (pp. 241-245). St. Louis, Missouri:
ACM Press .

Microsoft Corporation. (n.d.). ASP.NET
AJAX:. Retrieved May 1, 2007, from
ASP.NET AJAX: The Official Microsoft
ASP.NET AJAX Site: http://ajax.asp.net/

Neubauer, B. J. (2007). Introducing SOA
and workflow modeling to non-technical
students. Journal of Computing Sciences
in Colleges , 101-107.

Noonan, R. E. (2007). A course in web
programming. Journal of Computing Sci-
ences in Colleges , 23-28.

O'Rielly, T. (2005, September 30). What Is
Web 2.0: Design Patterns and Business
Models for the Next Generation of Soft-
ware. Retrieved May 1, 2007, from
http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-
20.html

Peslak, A. R. (2006). Web Services: Intro-
duction and Travel Project Tutorials Us-
ing Visual Studio and ASP.NET. The Pro-
ceedings of ISECON 2006 (p. 15). Dal-
las: ISECON.

APPENDIX

This Appendix includes several screen shots
from two student implementations of the
Slickr application.

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 14

 (a) Using the AJAX ratings control to rate
photos. The user selects a photo from the
dropdown list, and then assigns a rating to
it.

(b) Create new albums page. The first al-
bum has a photo selected for the album
cover; the second does not.

(c) Search page. The user selects one or
more tags from the list box, and sees all
matching photos. Only the photos update.

Rating Control

Album Cover

Search Box

Design View

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

www.manaraa.com

ISEDJ 6 (37) Frydenberg 15

(d) SlideShow Page. In Design View above,
the Content region shows the AJAX ASP.NET
ScriptManager and UpdatePanel containing
the image to be updated at each Timer in-
terval. When the page runs, only the image
updates every two seconds. The rest of the
page does not refresh.

(e) Edit and Update Pictures Page. This page
uses the AJAX ResizableControlExtender
Control to dynamically resize pictures on the
page.

At Runtime

Resize Photos

c© 2008 EDSIG http://isedj.org/6/37/ March 18, 2008

